具有 Li 10 GeP 2 S 12型结构的锂硅磷磺基氯化物 (LiSiPSCl)是全固态锂离子电池 (ASSLIB) 中最有前途的固体电解质 (SE) 之一,因为其目前最高的室温下的离子电导率。在这项工作中,三种 LiSiPSCl 电解质,即Li 7.59(10) Si 1.95(9) P 1.65(7) S 11.64(1) Cl 0.36(1) (SE-450),Li 7.67(12) Si 1.90( 1) P 1.67(1) S 11.61(2) Cl 0.39(2) (SE-475) 和 Li 7.58(5) Si 1.75(4)P 1.79(2) S 11.54(4) Cl 0.46(4) (SE-500),通过固相法在 450 / 475 / 500 °C 下制备 8 小时。通过将三种 SE 与两种阳极(Li 金属和 Li-In 合金)和一个 LiNbO 3包覆的 LiNi 0.8 Co阴极耦合,进行阻塞/对称/半阻塞电池和 ASSLIB 的组装,并进行电化学测量0.1锰0.1氧2(NCM@LNO)。研究的重点是化学成分、相结构和电化学性质之间的关系,以及电解质/电极界面稳定性。结果表明,LiSiPSCl 电解质与 Li-In 负极具有良好的界面稳定性,并表现出低极化电压(< 20 mV)和分解电流(< 0.01 mA)。优化后的 ASSLIBs NCM@LNO//SE-475//Li-In 表现出稳定的长期循环性能,循环 50 次后容量保持率为 97.0%(128.4 mAh g -1 ),容量保持率为 81.1%(107.4 mAh g - 1 ) 在0.1 C下循环100次后,表现出良好的倍率性能,在0.05 / 0.1 / 0.2 / 0.5 / 0.05 C下循环39次后容量保持率仍保持在99.3%(140.6 mAh g −1 )。
"点击查看英文标题和摘要"
Composition, structure and electrochemical performance of LiSiPSCl electrolyte with Li/Li-In anodes in all-solid-state batteries
The lithium silicon phosphor sulfo-chloride (LiSiPSCl) with a Li10GeP2S12-type structure is one of the most promising solid electrolytes (SEs) for all-solid-state lithium-ion batteries (ASSLIBs) due to its currently highest ionic conductivity at RT. In this work, three kinds of LiSiPSCl electrolytes, i.e. Li7.59(10)Si1.95(9)P1.65(7)S11.64(1)Cl0.36(1) (SE-450), Li7.67(12)Si1.90(1)P1.67(1)S11.61(2)Cl0.39(2) (SE-475) and Li7.58(5)Si1.75(4)P1.79(2)S11.54(4)Cl0.46(4) (SE-500), were prepared at 450 / 475 / 500 °C for 8 h through a solid-state method. The assembling of blocking / symmetrical / semi-blocking cells and ASSLIBs, and electrochemical measurements were carried out by coupling the three SEs with two kinds of anodes (Li metal and Li-In alloy) and one cathode of LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 (NCM@LNO). Studies were focused on the relationship among chemical compositions, phase structures and electrochemical properties, as well as the electrolyte/electrode interfacial stability. Results show that LiSiPSCl electrolytes had favorable interfacial stability with Li-In anode and exhibited low polarization voltage (< 20 mV) and decomposition current (< 0.01 mA). The optimized NCM@LNO//SE-475//Li-In of ASSLIBs exhibited a stable long-term cycle performance with a capacity retention of 97.0% (128.4 mAh g−1) after 50 cycles and 81.1% (107.4 mAh g−1) after 100 cycles at 0.1 C. In addition, it exhibited a good rate performance while its capacity retention remained 99.3% (140.6 mAh g−1) after 39 cycles at 0.05 / 0.1 / 0.2 / 0.5 / 0.05 C.